Countering Public Grant Fraud in Spain Machine Learning for Assessing Risks and Targeting Control Activities

Mihály Fazekas (Central European University and Government Transparency Institute)

Regional Workshop Using Technology to Prevent and Combat Corruption Amman, Jordan, 15-16 June 2022

 Introduce you to how machine learning can be used in an investigative context

 Highlight some ways of extending the datadriven risk assessment model

- There are hundreds of thousands of public grant awards each year
- Only a handfull of organisations and awards can be investigated
- As only few awards are fraudelent, a random/quota-based selection is unlikely to allocate scarce investigative resources efficiently

DATA & DATA PREPARATION

- 23 variables and 1,050,470 observations for years
 2018 2020
- Sanctions dummy: marks if the third party was sanctioned for the corresponding award, as well as for all previous awards received by the same party
- Most of the variables are binary (regions, countries, types of grants and awards, types of third parties), 4 numeric (costs, payments), dates and IDs

Variables in the analysis: selected examples of distributions

Third party legal status

Total value of awards

METHODOLOGY

- Problem: positive (sanctioned) cases are known, but negative cases are unclear
 - Some of the unsanctioned cases could have been sancitoned had they been investigated

Unlabelled	Positive
------------	----------

- Solution: Positive-Unlabelled learning using Random Forest (aka PU bagging)
 - Sequentially relabel unknown cases as negatives based on known risks

RESULTS

Distribution of predicted fraud risks: Tree-based Machine Learning approach

Most awards have virtually no risk

1,050,470 awards from 2018-2020 risk scored based on their similarity to observed sanctions

Distribution of predicted fraud risks: Zooming in on >50% risk

Potential uses of the results: combining risk and grant value

Distribution of awards value and predicted probabilities

For a similiar approach see: European Investment Bank: Prior Integrity Reviews (OECD, 2019)

Results: Partial dependence plots Most influential predictors

• Partial dependence plots

Most of these are proxies, rahter than directly pointing at wrongdoing

- Strengths
 - Efficient, well-tested methodology
 - Well-defined outcome (yes/no)
 - Precisely replicating past sanctions: 93% accuracy
- Weaknesses
 - Limited data
 - Past investigations may not have uncovered all major types of fraud

EXTENDING THE DATA & MODELING

Four groups of data:

- organisational data on the parties of the granting process
- connections and conflict of interest
- organisational reliability and violation of rules
- other funds and contracts

Dataset name	Dataset group	Unit of measurement	Number of observations	ID to match on to IGAE main dataset	-
<u>National</u> <u>Company</u> <u>registry</u>	i, ii	Organization	>5000000	NIF of beneficiaries, names of organizations	high
BO registry	i, ii	Organization	>5000000	NIF of beneficiaries	high
Database of Spanish senior positions and secretariats	ii	Institutions and State Bodies	~100000	Name of organizations	high
<u>CINCO net</u>	iii	Organizations	should be accessed by official body	NIF of organizations	high
<u>Public</u> procurement <u>data</u>	iv	Tender	1391558	NIF of organizations	high
<u>Public</u> Bankruptcy <u>Registry</u>	iii	Organizations	website does not allow to search	NIF of organizations	medium
<u>Spanish</u> Association of <u>Foundations</u> (AEF)	iv	Foundation	15840	Location and type of beneficiary	medium
State Tax Administration Agency-AEAT	iii	Organizations	not in public access	NIF of organizations	medium
<u>European Union</u> <u>aid</u>	iv	Grant or contract	40567	Name of beneficiary, vat number	medium
National Register of Associations of the Ministry of Interior	i, iii	Accredited NGO	44	CIF of organization	low
<u>Fundación</u> <u>Lealtad</u>	i, ii, iii	Accredited NGO	191	Name of organization	low

Public procurement data: external risk scores

Public procurement data can point at risk features of both grators, grantees and third parties

Variables	Description	Type of variable
Supplier ID	Unique ID of supplier	Text
Buyer ID	Unique ID of buyer	Text
Name of supplier	Name of supplier winning the contract	Text
Name of buyer	Name of buyer providing tender call	Text
Number of bids	How many bids were made per tender	Numeric
Procedure type	Is the procedure type open or restricted	Categorical
Public call	Was the call for tender available to public	Categorical
Length of bid submission	What is the length between start and end date of bid submission	Numeric
Length of decision period	What is the length between end date of bid submission and decision	Numeric
Connections	Are there recorded connections between supplier and procurement authority	Categorical

Public procurement corruption risks and grant fraud risks

- Matching based on beneficiary NIF
- Corruption risk indices such as single bidding or non-publication of the call for tenders covary with grants fraud risks of our model
- R2 for non-linear regression model is 0.17

SUGGESTIONS AND QUESTIONS?

Three stages of data processing:

- Merging: 17 datasets with different levels of observations (call level, award level, third party level) => aligning to award-level
- 2. Anonymisation (replacing identifiers)
- 3. Cleaning: dropping variables with low variation OR high missing rate (>50%)
- Preparing for analysis: dropping text variables, keeping only complete observations

- Merging used different IDs depending on the level of observation in each dataset
- Lower levels of observations were aggregated to match to award level

Variables in the analysis

Variable	Short description	Variable description	Туре	RETENCION_ PAG230	Retention	Condition of tax withholding carried out	factor
ABIERTO_CO N420	Open admission period	Indicates if the call keeps the application admission period open permanently	factor	CON560	Help instrument	One or more of the legal or economic figures on the basis of which the subsidies and aid are awarded	factor
AUDAESTAD O_CON490	Condition of State Aid	Indicates if the aid of the call should be classified as ADE	factor	CON580	Types of <u>beneficiary</u>	One or more of the types of <u>beneficiary</u> foreseen in the call	factor
FINALIDAD_C ON540	Purpose	Public utility or social interest or promotion of a public purpose pursued with the granting of the subsidy	factor	SAN_dum	Sanctions	If the award was sanctioned	factor
NOMINATIVA _CON610	Nominative grant	Nominative grant condition	factor	Month_CSU210	Month of award	Month of the date when the grant was awarded	factor
PUBLICABLE_ CON620	Publication	Condition of publicity of the concessions	factor	Nawards_TER_ 110	Number of awards	Number of awards received by the same third party	numeric
IMPACTOGEN ERO_CON630	Gender impact	It rates the expected results in relation to the elimination of inequalities between women and men and the <u>fulfillment</u> of the equality policy objectives	factor	Amount_award s_TER110	<u>Amount</u> of awards	Overall <u>amount</u> of awards received by the same third party	numeric
PAIS_TER100	Third party country	Country that generates the identification of the third party	factor	NATIONAL_C SU260 REGIONAL C		If the grant was awarded by national, regional or municipal	
PAISDOM_TE R250	Country of domicile		factor	SU260 MUNICIAPAL _CSU260	Level of award	body	factor
NATURALEZ A_TER280	Legal nature of the third party		factor	NATIONAL_T ER310 REGIONAL_T	Level of third	If the third party is located at national, regional, municipal	al factor
TIPOBEN_TER 290	Third party type	<u>Cataloging</u> of third parties based on their legal nature and economic activity	factor	ER310 MUNICIAPAL _TER310	party location	level	
COSTE_ACT_C SU240	Costs	Amount of the fundable budget of the activity to which the grant award applies	numeric	LOCAL_IMPL	Local implementation	If the location of third party is the same as location of granting body	factor
IMPORTE_PA G220	Amount paid (grant)		numeric	SECTOR_CON 550_AGREXT RATER	Sector of economy	Sectors of the economy foreseen in the call	factor

Positive-Unlabelled learning using Random Forest (aka PU bagging)

- 1. Run several standard Random Forests
- 2. Relabel unknown cases as negatives if they get a very low risk score compared to proven cases
- 3. Training a Random Forest model on relabelled sample: positive vs likely negative cases
- 4. Model quality assessment

Details of our methodology as implemented in the IGAE data

- Bagging model with nr.trees = 1000
- Highly unbalanced data: 1031 sanctioned awards vs 1,049,439 non-sanctioned awards
 relable negative (not sanctioned) cases using PU bagging
 - Relabel unlabelled cases
 - Full RF model

Results: influential predictors

SHAP plot

SHAP value (impact on model output)

28

Results: Predicted probabilities by public purpose of the call

Two categories show the most extended risk of sanctions: social services (5) and international cooperation for development and culture (20).

- 1. Data quality
 - Filling gaps in the variables with high missing rate
- 2. Behavioral indicators
 - More focus on risk indicators rather than background variables: company data
- 3. Efficient data pipeline
 - Developing techniques of data aggregation and flattening for merging purposes

Highest priority dataset for matching: National company registry and financial data

Can be matched to the main BDNS dataset by the company's NIF number

Plenty of potential risk indicators and red flags

		1
Variables	Description	Type of the variable
Name	What is the name of the company	Text
NIF	What is the NIF number of the company	Text
Date of incorporation	When the company was incorporated	Date
Company address	Where the company is registered	Text
Sector of economic activity	In which economic sector the company operates (NACE)	Categorical
Legal form	Official legal form of the company (national forms)	Categorical
Company status	If company is active and operational	Categorical
Company's assets	Total value of items benefiting the company economically	Numeric
Company's liabilities	Total value of company's obligations	Numeric
Company's income	Total amount of income generated annually	Numeric
Company's expenditures	Total amount of spendings list per year	Numeric
Changes in equity	If there were any changes in equity for the past year	Binary + text
Cash flows	Increase or decrease in the amount of money	List
Members	Includes the name of all members of the current organic representation	Text
Beneficial owners	List of names of final owners of the company	Text

31